Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.723
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612589

ABSTRACT

Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people.


Subject(s)
Fatty Acids, Omega-3 , Polycyclic Aromatic Hydrocarbons , Humans , Adult , Mice , Animals , Fatty Acids, Omega-3/pharmacology , DNA Adducts , Carcinogenesis , Cell Transformation, Neoplastic , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology
2.
Molecules ; 29(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474484

ABSTRACT

The determination and evaluation of 16 polycyclic aromatic hydrocarbons (PAHs) in seven Chinese herbal medicines (CHMs) were conducted through a rapid and straightforward extraction and purification method, coupled with GC-MS. A sample-based solid-phase extraction (SPE) pretreatment technique, incorporating isotopic internal standards, was employed for detecting various medicinal parts of CHMs. The assay exhibited linearity within the range of 5 to 500 ng/mL, with linear coefficients (R2) for PAHs exceeding 0.999. The recoveries of spiked standards ranged from 63.37% to 133.12%, with relative standard deviations (RSDs) ranging from 0.75% to 14.54%. The total PAH content varied from 176.906 to 1414.087 µg/kg. Among the 16 PAHs, phenanthrene (Phe) was consistently detected at the highest levels (47.045-168.640 µg/kg). Characteristic ratio analysis indicated that oil, coal, and biomass combustion were the primary sources of PAHs in CHMs. The health risk associated with CHMs was assessed using the lifetime carcinogenic risk approach, revealing potential health risks from the consumption of honeysuckle, while the health risks of consuming Lycium chinense berries were deemed negligible. For the other five CHMs (glycyrrhizae, Coix lacryma, ginseng, lotus seed, seed of Sterculia lychnophora), the health risk from consumption fell within acceptable ranges. Furthermore, sensitivity analyses utilizing Monte Carlo exposure assessment methods identified PAH levels in CHMs as health risk sensitizers. It is crucial to recognize that the consumption of herbal medicines is not a continuous process but entails potential health risks. Hence, the monitoring and risk assessment of PAH residues in CHMs demand careful attention.


Subject(s)
Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Environmental Monitoring/methods , Polycyclic Aromatic Hydrocarbons/analysis , Gas Chromatography-Mass Spectrometry , Risk Assessment , Plant Extracts/analysis , China
3.
Mar Pollut Bull ; 201: 116224, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457880

ABSTRACT

In this study, multiple molecular markers [polycyclic aromatic hydrocarbons (PAHs), linear and branched alkanes, unresolved complex mixture (UCM), hopanes, and steranes] were applied to explore petroleum-related inputs in complex coastal systems influenced by various human-induced pressures. To investigate anthropogenic impacts related to petrogenic emissions, we analysed surface sediments from coastal areas of southern Baltic, including harbour/shipyard channels, offshore dumping sites, shipping routes, and major sinks for particulate matter discharged by large rivers. This study indicates a large spatial variability in the contamination degree of examined sites by petroleum-derived chemicals. Hopanes and steranes along with UCM appeared to have the highest potential to identify petroleum sources in studied locations, whereas investigations based on alkanes and PAHs seemed to be considerably affected by inputs of modern biogenic and combustion-derived materials, respectively. However, the combined use of all these markers provides deeper insight into the complexity of sedimentary organic matter in human-impacted environments.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Humans , Anthropogenic Effects , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Environmental Monitoring , Alkanes/analysis , Petroleum/analysis , Biomarkers , Polycyclic Aromatic Hydrocarbons/analysis , Pentacyclic Triterpenes
4.
Environ Sci Pollut Res Int ; 31(16): 23462-23481, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38466385

ABSTRACT

Over the past two decades, oil spills have been one of the most serious ecological disasters, causing massive damage to the aquatic and terrestrial ecosystems as well as the socio-economy. In view of this situation, several methods have been developed and utilized to analyze oil samples. Among these methods, laser-induced fluorescence (LIF) technology has been widely used in oil spill detection due to its classification method, which is based on the fluorescence characteristics of chemical material in oil. This review systematically summarized the LIF technology from the perspective of excitation wavelength selection and the application of traditional and novel machine learning algorithms to fluorescence spectrum processing, both of which are critical for qualitative and quantitative analysis of oil spills. It can be seen that an appropriate excitation wavelength is indispensable for spectral discrimination due to different kinds of polycyclic aromatic hydrocarbons' (PAHs) compounds in petroleum products. By summarizing some articles related to LIF technology, we discuss the influence of the excitation wavelength on the accuracy of the oil spill detection model and proposed several suggestions on the selection of excitation wavelength. In addition, we introduced some traditional and novel machine learning (ML) algorithms and discussed the strengths and weaknesses of these algorithms and their applicable scenarios. With an appropriate excitation wavelength and data processing algorithm, it is believed that laser-induced fluorescence technology will become an efficient technique for real-time detection and analysis of oil spills.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Petroleum Pollution/analysis , Fluorescence , Ecosystem , Water Pollutants, Chemical/analysis , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Lasers , Environmental Monitoring/methods
5.
Environ Toxicol Chem ; 43(5): 1012-1029, 2024 May.
Article in English | MEDLINE | ID: mdl-38415986

ABSTRACT

The use of novel high-throughput sequencing (HTS) technologies to examine the responses of natural multidomain microbial communities to scrubber effluent discharges to the marine environment is still limited. Thus, we applied metabarcoding sequencing targeting the planktonic unicellular eukaryotic and prokaryotic fraction (phytoplankton, bacterioplankton, and protozooplankton) in mesocosm experiments with natural microbial communities from a polluted and an unpolluted site. Furthermore, metagenomic analysis revealed changes in the taxonomic and functional dominance of multidomain marine microbial communities after scrubber effluent additions. The results indicated a clear shift in the microbial communities after such additions, which favored bacterial taxa with known oil and polycyclic aromatic hydrocarbons (PAHs) biodegradation capacities. These bacteria exhibited high connectedness with planktonic unicellular eukaryotes employing variable trophic strategies, suggesting that environmentally relevant bacteria can influence eukaryotic community structure. Furthermore, Clusters of Orthologous Genes associated with pathways of PAHs and monocyclic hydrocarbon degradation increased in numbers at treatments with high scrubber effluent additions acutely. These genes are known to express enzymes acting at various substrates including PAHs. These indications, in combination with the abrupt decrease in the most abundant PAHs in the scrubber effluent below the limit of detection-much faster than their known half-lives-could point toward a bacterioplankton-initiated rapid ultimate biodegradation of the most abundant toxic contaminants of the scrubber effluent. The implementation of HTS could be a valuable tool to develop multilevel biodiversity indicators of the scrubber effluent impacts on the marine environment, which could lead to improved impact assessment. Environ Toxicol Chem 2024;43:1012-1029. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Microbiota , Water Pollutants, Chemical , Microbiota/drug effects , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons , Bacteria/genetics , Biodegradation, Environmental , Seawater/microbiology , Petroleum , Plankton/genetics
6.
J Hazard Mater ; 468: 133833, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401215

ABSTRACT

Increasing use of chemical dispersants for oil spills highlights the need to understand their adverse effects on marine microalgae and nutrient assimilation because the toxic components of crude oil can be more bioavailable. We employed the crude oil water-accommodated fraction (WAF) and chemically enhanced WAF (CEWAF) to compare different responses in marine microalgae (Phaeodactylum tricornutum) coupled with stable isotopic signatures. The concentration and proportion of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs), which are key toxic components in crude oil, increased after dispersant addition. CEWAF exposure caused higher percent growth inhibition and a lower chlorophyll-a level of microalgae than those after WAF exposure. Compared with WAF exposure, CEWAF led to an enhancement in the self-defense mechanism of P. tricornutum, accompanied by an increased content of extracellular polymeric substances. 13C-depletion and carbon assimilation were altered in P. tricornutum, suggesting more HMW PAHs could be utilized as carbon sources by microalgae under CEWAF. CEWAF had no significant effects on the isotopic fractionation or assimilation of nitrogen in P. tricornutum. Our study unveiled the impact on the growth, physiological response, and nutrient assimilation of microalgae upon WAF and CEWAF exposures. Our data provide new insights into the ecological effects of dispersant applications for coastal oil spills.


Subject(s)
Diatoms , Microalgae , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Petroleum/toxicity , Petroleum/analysis , Water , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Carbon
7.
J Hazard Mater ; 468: 133813, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38402679

ABSTRACT

This systematic review addresses soil contamination by crude oil, a pressing global environmental issue, by exploring effective treatment strategies for sites co-contaminated with heavy metals and polycyclic aromatic hydrocarbons (PAHs). Our study aims to answer pivotal research questions: (1) What are the interaction mechanisms between heavy metals and PAHs in contaminated soils, and how do these affect the efficacy of different remediation methods? (2) What are the challenges and limitations of combined remediation techniques for co-contaminated soils compared to single-treatment methods in terms of efficiency, stability, and specificity? (3) How do various factors influence the effectiveness of biological, chemical, and physical remediation methods, both individually and combined, in co-contaminated soils, and what role do specific agents play in the degradation, immobilization, or removal of heavy metals and PAHs under diverse environmental conditions? (4) Do AI-powered search tools offer a superior alternative to conventional search methodologies for executing an exhaustive systematic review? Utilizing big-data analytics and AI tools such as Litmaps.co, ResearchRabbit, and MAXQDA, this study conducts a thorough analysis of remediation techniques for soils co-contaminated with heavy metals and PAHs. It emphasizes the significance of cation-π interactions and soil composition in dictating the solubility and behavior of these pollutants. The study pays particular attention to the interplay between heavy metals and PAH solubility, as well as the impact of soil properties like clay type and organic matter on heavy metal adsorption, which results in nonlinear sorption patterns. The research identifies a growing trend towards employing combined remediation techniques, especially biological strategies like biostimulation-bioaugmentation, noting their effectiveness in laboratory settings, albeit with potentially higher costs in field applications. Plants such as Medicago sativa L. and Solanum nigrum L. are highlighted for their effectiveness in phytoremediation, working synergistically with beneficial microbes to decompose contaminants. Furthermore, the study illustrates that the incorporation of biochar and surfactants, along with chelating agents like EDTA, can significantly enhance treatment efficiency. However, the research acknowledges that varying environmental conditions necessitate site-specific adaptations in remediation strategies. Life Cycle Assessment (LCA) findings indicate that while high-energy methods like Steam Enhanced Extraction and Thermal Resistivity - ERH are effective, they also entail substantial environmental and financial costs. Conversely, Natural Attenuation, despite being a low-impact and cost-effective option, may require prolonged monitoring. The study advocates for an integrative approach to soil remediation, one that harmoniously balances environmental sustainability, cost-effectiveness, and the specific requirements of contaminated sites. It underscores the necessity of a holistic strategy that combines various remediation methods, tailored to meet both regulatory compliance and the long-term sustainability of decontamination efforts.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/metabolism , Metals, Heavy/analysis , Biodegradation, Environmental , Soil/chemistry , Artificial Intelligence
8.
Sci Total Environ ; 922: 171209, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38408657

ABSTRACT

The simultaneous application of in situ capping and electro-enhanced biodegradation may be a suitable method for ensuring the feasibility and safety of reusing abandoned coking sites. However, the capping layer type and applied electric field pattern may affect the efficiency of sequestering and removing pollutants. This study investigated changes in electric current, soil moisture content and pH, polycyclic aromatic hydrocarbon (PAH) concentration, bacterial number, and microbial community structure and metabolic function during soil remediation at abandoned coking plant sites under different applied electric field patterns and barrier types. The results indicated that polarity-reversal electric field was more conducive to maintaining electric current, soil properties, resulting in higher microbial number, community diversity, and functional gene abundance. At 21d, the mean PAH concentrations in contaminated soil, the capping layer's clean soil and barrier were 78.79, 7.56, and 1.57 mg kg-1 lower than those with a unidirectional electric field, respectively. The mean degradation rate of PAHs in the bio-barrier was 10.12 % higher than that in the C-Fe barrier. In the experiment combining a polarity-reversal electric field and a bio-barrier, the mean PAH concentrations in contaminated soil and the capping layer were 706.68 and 27.15 mg kg-1 lower than those in other experiments, respectively, and no PAHs were detected in the clean soil, demonstrating that the combination of the polarity-reversal electric field and the bio-barrier was effective in treating soil at abandoned coking plant sites. The established method of combining in situ capping with electro-enhanced biodegradation will provide technical support for the treatment and reuse of heavily PAH-contaminated soil at abandoned coking plant sites.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Soil Microbiology , Biodegradation, Environmental , Soil/chemistry
9.
Mar Pollut Bull ; 200: 116088, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309176

ABSTRACT

In 2019, an oil spill hit the Brazilian Northeast coast causing impact to several ecosystems, including sea turtles' breeding and feeding areas. This study aimed to investigate whether sea turtles were impacted by this oil disaster, correlating the oil found inside feces with a sandy-oiled sample collected on the beach some days after the accident. The fecal samples were collected in the upper mid-littoral reef areas during three consecutive days in February 2020. The results suggested that sea turtles consumed algae contaminated by petroleum. Hydrocarbons composition of oil inside feces was similar to the sandy-oiled sample, suggesting they were the same. Lighter aliphatic and polycyclic aromatic compounds were missing, indicating both sandy-oiled and oil inside the feces had experienced significant evaporation prior to collection. Although the long-term damage is still unknown, the data are novel and relevant to support future research and alert authorities about the risks to sea turtles.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Turtles , Water Pollutants, Chemical , Animals , Environmental Monitoring , Ecosystem , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
10.
Toxicol Mech Methods ; 34(3): 245-255, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38375852

ABSTRACT

Crude oil spilled at sea is chemically altered through environmental processes such as dissolution, biodegradation, and photodegradation. Transformation of hydrocarbons to oxygenated species increases water-solubility. Metabolites and oxidation products largely remain uncharacterized by common analytical methods but may be more bioavailable to aquatic organisms. Studies have shown that unresolved (i.e. unidentified) polar compounds ('UPCs') may constitute > 90% of the water-accommodated fraction (WAF) of heavily weathered crude oils, but still there is a paucity of information characterizing their toxicological significance in relation to other oil-derived toxicants. In this study, low-energy WAFs (no droplets) were generated from two field-weathered oils (collected during the 2010 Deepwater Horizon incident) and their polar fractions were isolated through fractionation. To allow establishment of thresholds for acute toxicity (LC50) of the dissolved and polar fraction of field collected oils, we concentrated both WAFs and polar fractions to beyond field-documented concentrations, and the acute toxicity of both to the marine copepod Acartia tonsa was measured and compared to the toxicity of the native WAF (non-concentrated). The difference in toxic units (TUs) between the total of the mixture and of identified compounds of known toxicity (polycyclic aromatic hydrocarbons [PAHs] and alkyl phenols) in both WAF and polar fractions was used to estimate the contribution of the UPC to overall toxicity. This approach identified that UPC had a similar contribution to toxicity as identified compounds within the WAFs of the field-weathered oils. This signifies the relative importance of polar compounds when assessing environmental impacts of spilled and weathered oil.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Petroleum Pollution/analysis , Water Pollutants, Chemical/toxicity , Oils , Petroleum/toxicity , Petroleum/analysis , Water , Polycyclic Aromatic Hydrocarbons/toxicity
11.
Sci Total Environ ; 918: 170544, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38309367

ABSTRACT

Multiple lines of evidence at whole animal, cellular and molecular levels implicate polycyclic aromatic compounds (PACs) with three rings as drivers of crude oil toxicity to developing fish. Phenanthrene (P0) and its alkylated homologs (C1- through C4-phenanthrenes) comprise the most prominent subfraction of tricyclic PACs in crude oils. Among this family, P0 has been studied intensively, with more limited detail available for the C4-phenanthrene 1-methyl-7-isopropyl-phenanthrene (1-M,7-IP, or retene). While both compounds are cardiotoxic, P0 impacts embryonic cardiac function and development through direct blockade of K+ and Ca2+ currents that regulate cardiomyocyte contractions. In contrast, 1-M,7-IP dysregulates aryl hydrocarbon receptor (AHR) activation in developing ventricular cardiomyocytes. Although no other compounds have been assessed in detail across the larger family of alkylated phenanthrenes, increasing alkylation might be expected to shift phenanthrene family member activity from K+/Ca2+ ion current blockade to AHR activation. Using embryos of two distantly related fish species, zebrafish and Atlantic haddock, we tested 14 alkyl-phenanthrenes in both acute and latent developmental cardiotoxicity assays. All compounds were cardiotoxic, and effects were resolved into impacts on multiple, highly specific aspects of heart development or function. Craniofacial defects were clearly linked to developmental cardiotoxicity. Based on these findings, we suggest a novel framework to delineate the developmental toxicity of petrogenic PAC mixtures in fish, which incorporates multi-mechanistic pathways that produce interactive synergism at the organ level. In addition, relationships among measured embryo tissue concentrations, cytochrome P4501A mRNA induction, and cardiotoxic responses suggest a two-compartment toxicokinetic model that independently predicts high potency of PAC mixtures through classical metabolic synergism. These two modes of synergism, specific to the sub-fraction of phenanthrenes, are sufficient to explain the high embryotoxic potency of crude oils, independent of as-yet unmeasured compounds in these complex environmental mixtures.


Subject(s)
Petroleum , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Animals , Zebrafish , Cardiotoxicity , Phenanthrenes/toxicity , Structure-Activity Relationship , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity
12.
Mar Pollut Bull ; 200: 116063, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278019

ABSTRACT

The most extensive oil spill ever recorded in tropical oceans occurred between August 2019 and March 2020, affecting approximately 3000 km of the Brazilian coast. This study assessed the chemical contamination and toxicity of sediments collected from affected reef areas during two sampling surveys conducted 17 and 24 months after the peak of oil slick inputs. Our results indicated that neither PAH levels nor measured toxicity showed a significant contribution from the spilled oil, with concentrations and biological effects indistinguishable from those in unaffected areas. Similarly, no differences were observed between seasons. Furthermore, there was no discernible relationship between sediment toxicity results and the measured PAH concentrations. Therefore, while biological responses indicated toxicity in most assessed areas, these responses are likely related to other local sources. This evidence suggests a natural oil attenuation process contributing to local environmental recovery. Nonetheless, further investigation is needed for other areas affected by oil spills.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Petroleum Pollution/analysis , Geologic Sediments/chemistry , Environmental Monitoring/methods , Brazil , Petroleum/toxicity , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
13.
Food Chem Toxicol ; 185: 114454, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237855

ABSTRACT

Evidence suggests that meat processing and heat treatment may increase cancer risk through exposure to potentially carcinogenic compounds, polycyclic aromatic hydrocarbons (PAHs), and heterocyclic aromatic amines (HAAs). This study aims to investigate the effect of low concentrations of PAHs and HAAs (from 1 to 100 µmol/L/24h and 48h) in colorectal tumor cells (HT-29, HCT116, and LS174T) and to evaluate the effect of PAHs in the presence of inulin in mice. In vitro, the 4-PAHs have no effect on healthy colon cells but decreased the viability of the colorectal tumor cells and activated the mRNA and protein expressions of CYP1A1 and CYP1B1. In vivo, in mice with colitis induced by 3% DSS, the 4-PAHs (equimolar mix at 50,100, 150 mg/kg.bw, orally 3 times a week for 3 weeks) induced a loss of body weight and tumor formation. Inulin (10 g/L) had no effect on colon length and tumor formation. A significant decrease in the loss of b.w was observed in inulin group as compared to the fiber free group. These results underscore the importance of considering the biological association between low-dose exposure to 4-HAPs and diet-related colon tumors.


Subject(s)
Colorectal Neoplasms , Heterocyclic Compounds , Polycyclic Aromatic Hydrocarbons , Animals , Mice , Inulin/pharmacology , Amines/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Dietary Supplements , Heterocyclic Compounds/toxicity
14.
Sci Total Environ ; 918: 170496, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38296090

ABSTRACT

Most of the polycyclic aromatic hydrocarbons (PAHs) in petroleum are alkylated (alkyl PAHs), still the metabolism of these alkyl PAHs to the expected acid products (polycyclic aromatic acids; PAAs) has yet to be demonstrated in oil-exposed fish. Should these compounds be discovered in fish as they have in ragworm, rodents, and humans, they could present an indicative biomarker for assessing oil pollution. In this study, the ability to biotransform alkyl PAHs to PAAs was examined on Atlantic haddock (Melanogrammus aeglefinus). Exposure to phenanthrene, 1-methyphenanthrene or 1,4-dimethylphenanthrene was performed via intraperitoneal injection. An Ion Mobility Quadrupole Time-Of-Flight Mass Spectrometer (IMS-Q-TOF MS) was used in exploratory analysis of extracted bile samples. Acquisition of four-dimensional information by coupling liquid chromatography with the IMS-Q-TOF MS and in-silico prediction for feature prioritization in the data processing workflow allowed several tentative identifications with high degree of confidence. This work presents the first detection of PAAs in fish and suggests the importance of investigating alkyl PAHs in ecotoxicological studies of oil-polluted fish environments.


Subject(s)
Gadiformes , Petroleum Pollution , Petroleum , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Animals , Humans , Fishes/metabolism , Gadiformes/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Petroleum/toxicity , Petroleum/analysis , Petroleum Pollution/analysis
15.
Mar Pollut Bull ; 199: 115990, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176163

ABSTRACT

One year after the emergency diesel fuel spill in Norilsk, hydrocarbon concentrations in bottom sediments of the Norilsk-Pyasina water system decreased. However the average concentrations of hydrocarbons in surface sediments decreased in the same sequence (µg/g) as in 2020: the mouth of the Ambarnaya R. (835, σ = 1788) > Bezymyanny Cr.-the Daldykan R.-the Ambarnaya R. (306, σ = 273) > the Pyasina R. (23, σ = 20) > the Pyasino Lake (12, σ = 8). Concentrations decreased due to degradation of low molecular weight hydrocarbons. The content of polycyclic aromatic hydrocarbons in 2021 also changed in a smaller range (0-1027 ng/g) than in 2020 (0-3865 ng/g). Petroleum origin of polycyclic aromatic hydrocarbons in the sediments of the Ambarnaya R. (including the mouth), Bezymyanny Cr. and the Daldykan R. is confirmed by the dominance of alkylated naphthalene homologues in their composition. Hydrocarbons accumulation in some layers of the sedimentary column is caused not only by the spill of diesel fuel, but also by the organic matter from the surrounding swamps, from wetlands and floodplain lakes, as well as by the burial of the surface layer by the 2021 flood.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Gasoline , Water , Geologic Sediments , Hydrocarbons/analysis , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring
16.
Environ Geochem Health ; 46(1): 22, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38169010

ABSTRACT

The levels, spatial distribution, and sources of petroleum hydrocarbons and phthalates were assessed in surface sediment samples from the urban lagoon of Obhur near Jeddah, the largest city on the Red Sea coast of Saudi Arabia. The lagoon was divided into the inner zone, middle zone, and outer zone based on its geomorphological features and developmental activities. n-Alkanes, hopane and sterane biomarkers, and unresolved complex mixture were the major petroleum hydrocarbon compounds of the total extractable organic matter. Phthalates were also measured in the sediment samples. In the three zones, n-alkanes ranged from 89.3 ± 88.5 to 103.2 ± 114.9 ng/g, whereas the hopane and sterane biomarkers varied from 69.4 ± 75.3 to 77.7 ± 69.9 ng/g and 72.5 ± 77.9-89.5 ± 82.2 ng/g, respectively. The UCM concentrations ranged from 821 ± 1119 to 1297 ± 1684 ng/g and phthalates from 37.4 ± 34.5 65 ± 68 ng/g. The primary origins of these anthropogenic hydrocarbons in the lagoon sediments were petroleum products (boat engine discharges, boat washing, lubricants, and wastewater flows) and plasticizers (plastic waste and litter). The proportions of anthropogenic hydrocarbons derived from petroleum products in the sediment's TEOM ranged from 43 ± 33 to 62 ± 15%, while the percentages for plasticizers varied from 2.9 ± 1.2 to 4.0 ± 1.6%. The presence and inputs of these contaminants from petroleum and plastic wastes in the lagoon's sediments will eventually have an impact on its habitats, including the benthic nursery and spawning areas.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Petroleum/analysis , Indian Ocean , Saudi Arabia , Plasticizers , Geologic Sediments , Water Pollutants, Chemical/analysis , Hydrocarbons/analysis , Alkanes/analysis , Biomarkers , Pentacyclic Triterpenes , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis
17.
Environ Res ; 245: 117901, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38092235

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are significant petroleum pollutants that have long-term impacts on human health and ecosystems. However, assessing their toxicity presents challenges due to factors such as cost, time, and the need for comprehensive multi-component analysis methods. In this study, we utilized network toxicity models, enrichment analysis, and molecular docking to analyze the toxicity mechanisms of PAHs at different levels: compounds, target genes, pathways, and species. Additionally, we used the maximum acceptable concentration (MAC) value and risk quotient (RQ) as an indicator for the potential ecological risk assessment of PAHs. The results showed that higher molecular weight PAHs had increased lipophilicity and higher toxicity. Benzo[a]pyrene and Fluoranthene were identified as core compounds, which increased the risk of cancer by affecting core target genes such as CCND1 in the human body, thereby influencing signal transduction and the immune system. In terms of biological species, PAHs had a greater toxic impact on aquatic organisms compared to terrestrial organisms. High molecular weight PAHs had lower effective concentrations on biological species, and the ecological risk was higher in the Yellow River Delta region. This research highlights the potential application of network toxicity models in understanding the toxicity mechanisms and species toxicity of PAHs and provides valuable insights for monitoring, prevention, and ecological risk assessment of these pollutants.


Subject(s)
Environmental Pollutants , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Humans , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Ecosystem , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Petroleum/toxicity , Petroleum/analysis , Molecular Docking Simulation , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring , Risk Assessment , China , Geologic Sediments/analysis
18.
Arch Toxicol ; 98(2): 551-565, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38085275

ABSTRACT

The present study evaluates the in vitro developmental toxicity and the possible underlying mode of action of DMSO extracts of a series of highly complex petroleum substances in the mouse embryonic stem cell test (mEST), the zebrafish embryotoxicity test (ZET) and the aryl hydrocarbon receptor reporter gene assay (AhR CALUX assay). Results show that two out of sixteen samples tested, both being poorly refined products that may contain a substantial amount of 3- to 7-ring polycyclic aromatic compounds (PACs), induced sustained AhR activation in the AhR CALUX assay, and concentration-dependent developmental toxicity in both mEST and ZET. The other samples tested, representing highly refined petroleum substances and petroleum-derived waxes (containing typically a very low amount or no PACs at all), were negative in all assays applied, pointing to their inability to induce developmental toxicity in vitro. The refining processes applied during the production of highly refined petroleum products, such as solvent extraction and hydrotreatment which focus on the removal of undesired constituents, including 3- to 7-ring PACs, abolish the in vitro developmental toxicity. In conclusion, the obtained results support the hypothesis that 3- to 7-ring PACs are the primary inducers of the developmental toxicity induced by some (i.e., poorly refined) petroleum substances and that the observed effect is partially AhR-mediated.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Mice , Animals , Petroleum/toxicity , Petroleum/analysis , Zebrafish , Mouse Embryonic Stem Cells
19.
Sci Total Environ ; 912: 169015, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040369

ABSTRACT

In situ burning of marine oil spills reduces the total amount of oil in the environment, but a negative side effect may be the generation of environmentally hazardous polycyclic aromatic hydrocarbons (PAHs) that may pose a risk for bioaccumulation, particularly in organisms having a high lipid content. In this study uptake of PAHs from oil and burn residue were examined in the high arctic copepod Calanus hyperboreus. A major part of the low ring number petrogenic PAHs in the oil was removed during burning and relative higher concentrations of pyrogenic high ring number PAHs was found in the burn residue. This suggests that burning markedly reduces the general PAH exposure load. Furthermore, the pyrogenic PAHs generated during the burn were not bioconcentrated to quantifiable levels in the copepods. We conclude that in situ burning can mitigate the potential risk of PAH uptake for copepods and other pelagic organisms in the marine environment as the pyrogenic PAHs only pose low risk for uptake from the water by the copepods and other pelagic organisms.


Subject(s)
Copepoda , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Petroleum Pollution/analysis , Water Pollutants, Chemical/analysis , Petroleum/analysis
20.
Environ Sci Process Impacts ; 26(1): 146-160, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38009362

ABSTRACT

Industrialization and urbanization have led to increasing levels of PAH pollution in highly urbanized estuaries and their adjacent coastal areas globally. This study focused on the adjacent coastal area of the Yellow River Estuary (YRE) and collected surface seawater, surface sediment, and clams Ruditapes philippinarum and Mactra veneriformis at four sites (S1 to S4) in May, August, and October 2021 to analyze the source-specific ecological and health risks and bioeffects. The findings revealed that the main sources of PAHs were traffic emission (25.2% to 28.5%), petroleum sources (23.3% to 29.5%), coal combustion (24.7% to 27.5%), and biomass combustion (19.8% to 20.7%). Further, the PMF-RQ and PMF-ILCR analyses indicated that traffic emission was the primary contributor to ecological risks in seawater and health risks in both clam species, while coal combustion was the major contributor in sediment. Taken together, it is recommended to implement control strategies for PAH pollution following the priority order: traffic > coal > petroleum > biomass, to reduce the content and risk of PAHs in the YRE.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Estuaries , Water Pollutants, Chemical/analysis , Rivers , Geologic Sediments/analysis , Environmental Monitoring , China , Coal/analysis , Petroleum/analysis , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL